Math 4200 Wednesday October 28

3.2 Finish Taylor series/power series facts and examples. After we quickly review the first page of today's notes we'll go back and finish the examples from Monday, as well as the proof of the theorem that connects radius of convergent for Taylor series of analytic functions at z_0 to the maximal disk of analyticity.

Announcements: Quiz today!

Warmup-exercise: What is the power series for cos(z) based at the origin, and what is its radius of convergence?

3.2 Quick fact Summary from Monday:

Theorem 1 Every power series

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \qquad a_n, z_0 \in \mathbb{C}$$

has a unique radius of convergence $R \in [0, \infty]$ such that the power series above converges $\forall z$ with $|z - z_0| < R$ (uniformly absolutely for any r < R), and diverges for all z with $|z - z_0| > R$. The limit is an analytic function.

Theorem 2 Power series may be differentiated and integrated term by term to get derivatives and antiderivatives of f, and the resulting power series have the same radius of convergence as the original function f.

<u>Theorem 3</u> Therefore, whenever R > 0, after differentiating k times and substituting $z = z_0$ into the power series, one realizes that the power series is actually the Taylor series for f,

$$a_k = \frac{f^{(k)}(z_0)}{k!}$$

As a consequence, power series that yield the same analytic function in a neighborhood of z_0 must be identical, because they are the Taylor series for that function, centered at z_0 .

<u>Theorem 4</u> f f is analytic in $D(z_0; R_1)$ then the Taylor series for f at z_0 ,

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

converges to f in $D(z_0; R_1)$. Thus the radius of convergence of the Taylor series is at least R_1 . And, one can use this to get an upper bound on the radius of convergence: if $\exists z_1$ such that f cannot be extended to be analytic at z_1 , then the radius of convergence of the Taylor series is at most $|z_1 - z_0|$, since a larger radius of convergence would imply that a possible domain of analyticity contains z_1 .

(To be proved today, using Monday's notes.)

Sometimes it is useful to know you can multiply power series term by term, and without having to worry about radius of convergence issues. This theorem makes it a breeze:

<u>Theorem 5</u> (Multiplying power series): Let $_{\infty}$

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n = a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \dots$$
$$g(z) = \sum_{n=0}^{\infty} b_n (z - z_0)^n == b_0 + b_1 (z - z_0) + b_2 (z - z_0)^2 + \dots$$

in $D(z_0; R)$. Then the power series for f(z)g(z) also converges in $D(z_0; R)$ and is given by

$$f(z)g(z) = a_0b_0 + (a_0b_1 + a_1b_0)(z - z_0) + (a_0b_2 + a_1b_1 + a_2b_0)(z - z_0)^2 + \dots$$
$$f(z)g(z) = \sum_{n=0}^{\infty} \left(\sum_{j=0}^{n} a_j b_{n-j}\right)(z - z_0)^n,$$

in other words, what you expect by formally multiplying and collecting all coefficients for each $(z - z_0)^n$.

proof: We know that power series are Taylor series. Therefore,

$$f(z)g(z) = \sum_{n=0}^{\infty} \frac{(fg)^{(n)}(z_0)}{n!} (z - z_0)^n$$

will converge in $D(z_0; R)$. Compute the various derivatives, using the product rule for first, second, ..., n^{th} derivatives of product functions (via induction and the binomial theorem).

$$(fg)(z_0) = a_0b_0$$

$$(fg)'(z_0) = f'(z_0)g(z_0) + f(z_0)g'(z_0) = a_1b_0 + a_0b_1$$

$$(fg)''(z_0) = f''(z_0)g(z_0) + 2f'(z_0)g'(z_0) + f(z_0)g''(z_0)$$

$$(fg)''(z_0) = (2a_2)b_0 + 2a_1b_1 + a_0(2b_2) = 2!(a_2b_0 + a_1b_1 + a_0b_2)$$

In general and using the product rule, (checked by induction, as in proof of binomial theorem in first HW),

$$(fg)^{(n)}(z_0) = \sum_{j=0}^n {n \choose j} f^{(j)}(z_0) g^{(n-j)}(z_0)$$
$$= \sum_{j=0}^n \frac{n!}{j! (n-j)!} (j! a_j) (n-j)! b_{n-j} = n! \sum_{j=0}^n a_j b_{n-j}$$

Q.E.D.

Example: Find the first three non-zero terms in the Taylor series for $\sec(z) = \frac{1}{\cos(z)}$ at $z_0 = 0$. Hint, rewrite the equation as

 $\cos(z) \sec(z) = 1.$ what is the radius of convergence of this power series?